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Abstract
In the frame of the long-wavelength Heisenberg model, the magnonic bandgaps
and the selective transmission in a serial loop structure, made of loops pasted
together with segments of finite length, are investigated theoretically. The loops
and the segments are assumed to be one-dimensional ferromagnetic materials.
Using a Green function method, we obtained closed-form expressions for the
band structure and the transmission coefficients for an arbitrary value of the
number N of loops in the serial loop structure. It was found that the gaps
originated from the periodicity of the system. The width of these forbidden
bands depends on the structural and compositional parameters. We also present
analytical and numerical results for the transmission coefficient through a
defective geometry where the length of one finite branch has been modified.
It was demonstrated that the presence of this defect in the structure can give
rise to localized states inside the gaps. We show especially that these localized
states are very sensitive to the size of the loops and to the periodicity as well as
to the length and the location of the defect branch.

1. Introduction

In recent years low-dimensional spin systems—i.e. magnetic structures with a dimensionality
smaller than three—have brought both theoretical and experimental interest [1–3]. The
remarkable progress achieved during the past decade in lithographic techniques now allows
the fabrication of high-quality, well controlled laterally defined magnetic structures, for
example dots and wires, of micrometre or submicrometre sizes. Although static properties of
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micrometre-size magnetic dots and wires have been studied to some extent [4–7], their high-
frequency dynamic properties have been rarely investigated [8, 9]. The study of spin waves
is a powerful method for probing the dynamic properties of magnetic media in general and
those of laterally patterned magnetic structures in particular [10]. On the other hand, due to the
possible use of electron spin for storage and information transfer in quantum computers [11],
there have been many recent studies on spin transport in semiconductor nanostructures [12].
In the last decade, several studies have addressed the problem of spin wave band structures in
magnetic superlattices [13–16] and two-dimensional (2D) magnetic periodic structures [17].
Most of these studies focus on the existence of stop bands in the spin wave spectra of magnetic
structures. More recently, we proposed [18] a model of one-dimensional magnonic crystals
exhibiting very narrow pass bands separated by large forbidden bands, following similar
studies in photonic and electronic bandgap materials. This system (called a comb structure) is
composed of an infinite one-dimensional waveguide along which an infinite or a finite set of
side branches is grafted periodically. The presence of defect branches in the comb structure
can give rise to localized states within the gaps. It has been shown that these states are very
sensitive to the length and number of the side branches, to the periodicity of the system and to
the length of the defect branches.

Interest in the systems exhibiting complete or pseudo-gaps was initiated by the pioneering
work of Yablonovitch on the macroscopic photonic crystals in 1987 [19]. These systems
are useful from both the practical and the fundamental point of view. From the fundamental
point of view, Yablonovitch [19] emphasized the inhibition/prohibition of the spontaneous
emission due to the existence of the photonic bandgaps. John had simultaneously stressed that
the existence of the complete photonic bandgaps could lead to the Anderson localization of
light [20] in slightly disordered photonic crystals [21]. From the practical point of view, such
systems can be used to design filters that prohibit waves at certain frequencies while allowing
free propagation at others. Since then the subject has stimulated a widespread interest in
various analogous systems. We refer to those using, for example, elastic waves [22], acoustic
waves [23], spin waves [17] and electron waves [24]. These properties also began to be
investigated in quasi-one-dimensional photonic crystals [25–27].

Advances in modern semiconductor technology, which have permitted the fabrication
of nanostructures with controllable chemical composition and geometry—such as quantum
wires, dots, rings, crossbars etc [28]—suggest the possibility of designing and manufacturing
networks of one-dimensional magnetic wires [29]. For example, arrays of very long
ferromagnetic nanowires of Ni, permalloy and Co, with diameters in the range of 30–500 nm
have been created [30]. These are very uniform in cross section, with lengths in the range of
20 µm. They are thus realizations of nanowires one can reasonably view as infinite in length,
to an excellent approximation. Besides the static and magneto-transport properties of magnetic
nanowire arrays, the dynamic properties of magnetic nanostructures are also of considerable
interest in both fundamental and applied research [31]. These recent developments encouraged
us to continue our theoretical investigation of magnetic excitations in networks composed
of one-dimensional continuous magnetic media. Our choice of one-dimensional magnetic
structures is motivated by possible engineer spin injection devices that render feasible the
control of the widths of the pass bands (and hence the stop bands).

A model Hamiltonian which considers the exchange energy, the uniaxial anisotropy and
the Zeeman energy would be very convenient to discuss various properties of magnetic periodic
structures. However, in the present work, in order to neglect the quantum size effect (or the
sub-band structure), we shall deal with a magnetic network where the cross-sections of all wires
are considered to be much smaller than the considered wavelength. Therefore a continuum
approximation was convenient for us to use. Such an approximation is valid provided that the
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relevant wavelengths are large compared with the lattice spacing, i.e. we shall deal only with
long-wavelength excitations. Therefore, in using the Heisenberg model of a ferromagnet we
are neglecting the dipole–dipole interactions compared with the exchange contribution to the
Hamiltonian [18, 32]. This macroscopic approach is analogous to that used by Cottam [33]
in magnetostatic calculations. Let us mention also that the continuum theory used here has
the advantages that explicit analytic expressions of different magnetic properties (dispersion
curves, density of states, transmission coefficients, . . . ) can be calculated.

The Green function (response theory) method used in the calculation in this paper derives
a response function which contains all the physical information on the composite system under
study. This response function in particular gives directly the magnetization at any point of the
system as a response to an unit input excitation introduced at any other point. This method
is equivalent to the usual calculation of the eigenvalues and eigenvectors of the composite
system in particular by the transfer matrix method [14,15]. Its advantages are in a more compact
treatment of the interface boundary conditions and in the fact that this response function enables
direct calculations of all the physical properties, in particular of those connected with defects
and scattering problems [32]. These Green functions enable us to obtain analytic expressions
for the dispersion relation as well as the reflection and transmission coefficients through the
structure. The complete response functions can also be used to derive all eigenvectors [34] in
the finite networks.

In this paper, we present results on the magnonic band structures and transmission
coefficients for a new geometry of one-dimensional magnonic crystals: the serial loop
structures (SLSs) (see figure 1). The geometry of the structures has the peculiar property
of giving rise to transmission gaps. These transmission gaps occur at particular frequencies
that are related to the length and to the physical characteristics of the constituents. These
frequencies broaden into absolute gaps as the loop number N increases. The results reported
here demonstrate that the widths of the pass bands (and hence of the stop bands) in the serial
loop magnonic band structure can be controlled by modifying appropriately the geometry and
the chemical nature of the network’s constituents. In addition to the excitation spectra of SLSs,
we have also calculated the transmission spectra of finite ones. Finally, we address the issue
of the existence of localized states in the forbidden bands of the magnonic band structure.
Such localized states result from the presence of a defect segment inside the waveguide. Let
us stress that in a comb structure [18] an important difficulty lies in the technical realization
of the boundary condition at the free ends of the resonators, while this problem is avoided in
SLSs.

This study is organized as follows. In section 2, we deal with infinite and finite SLSs.
First we use the semi-classical torque equation for the magnetization and the GFM to write
down the magnetic GF for an infinite Heisenberg ferromagnetic medium. We then calculate
the dispersion relation for SLSs and the transmission coefficients with and without defects.
In section 3, we illustrate these analytical results by numerical examples with emphasis on
the effect of the geometry on the bandgap and the transmission spectrum of the networks.
Then we turn to the existence of localized modes within the gaps. The main conclusions are
summarized in section 4.

2. Theoretical model

2.1. One-dimensional infinite serial loop structures

In this paper, we have calculated magnonic band structures and transmission coefficients for
SLSs using the GFM developed by Dobrzynski [34]. The one-dimensional infinite serial loop
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Figure 1. (a) Schematic diagram of the one-dimensional serial loop structure studied in this work.
The media are designated by an index i, with i equal to 1 for the finite branch and 2 for the loop. Each
loop has a length 2d2 and is distant by d1 from neighbouring loops. Each cell is composed of a finite
branch and the loop connected to its right extreme. (b) Waveguide with finiteN loops separated by
a length d1 and connected at its extremities to two semi-infinite leading lines (medium 3). (c) The
same as in (b) except that a defect branch of length dd (heavy line) is introduced into cell p of the
waveguide.

waveguide can be modelled as an infinite number of unit cells pasted together (see figure 1(a)).
Each cell is composed of a finite wire (medium 1) of length d1 in the direction x3, connected
to a loop ‘ring’ (medium 2) of length 2d2 (each loop is constructed of two wires with the same
length d2). The period of the SLS is D = d1 + d2. The interface domain is constituted of all
the connection points between finite segments and loops. A space position along the x3 axis
in medium i belonging to the unit cell n is indicated by (n, i, x3), where n, ‘cell number’, is
an integer such that −∞ < n < +∞, i the medium index and −di/2 � x3 � +di/2. The
media are assumed to be Heisenberg ferromagnets, which means that we are neglecting the
dipole–dipole interaction as compared with the exchange contribution to the Hamiltonian [18].
Moreover, we are dealing with long-wavelength magnetic excitations and therefore use the
continuum approximation of the Heisenberg model (see for details [15] and [18]). Here and
afterwards the cross-sections of all wires are considered to be much smaller than the considered
wavelength, so as to neglect the quantum size effect (or the sub-band structure). Due to the
translational periodicity of the system in the direction x3 one can define a wavevector k3 along
the axis of the waveguide associated with the periodD. With these ingredients, one can derive
analytically the dispersion relation of the SLS, as well as the transmission coefficient through
a waveguide containing a finite number of loops.

The Green function of the infinite homogeneous ferromagnetic medium i associated with
the magnetization satisfies the following equation [18]:

Fi

αi

(
∂2

∂x3
2

− α2
i

)
Gi(x3, x

′
3) = δ(x3 − x ′

3) (1)
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and can be expressed as

Gi(x3, x
′
3) = −e−αi |x3−x ′

3|

2Fi
(2)

where

Fi = D′
iαi

γiMi

(3)

with

αi =
√

− (ω − γiH0)

D′
i

(4)

and

D′
i = 2Ja2Mi

γih̄
2 . (5)

In equations (3)–(5), Mi , H0, ω, J and γi represent, respectively, the spontaneous
magnetization, the static external field in the x1 direction, the frequency of the spin wave,
the exchange interaction between neighbouring magnetic sites in the simple cubic lattice of
lattice parameter a constituting the ferromagnetic medium and the gyromagnetic ratio.

We briefly recall the building principle of the Green function of the infinite SLS. This
will enable us to present the dispersion relations and the transmitted waves without going into
too much detail. Our calculation is based on the theory of interface response in composite
materials [34], in which the Green function g of a composite system is given as

g(DD) = G(DD)−G(DM)G−1(MM)G(MD)

+G(DM)G−1(MM)g(MM)G−1(MM)G(MD) (6)

whereD andM are the whole space and the space of the interfaces in the composite materials,
respectively. G(DD) is the Green function of a reference continuous medium and g(MM)
the interface elements of the Green function of the composite system. The inverse g−1(MM)

of g(MM) is obtained for any point within the space of the interface M = {⋃Mi} as a
superposition of the different g−1

i (Mi,Mi) [34], the inverses of gi(Mi,Mi) for each constituent
i of the composite system.

The interface states can be calculated from [34]

det[g−1(MM)] = 0 (7)

showing that, if one is interested in calculating the interface states of a composite, one only
needs to know the inverse of the Green function of each individual block in the space of their
respective surfaces and/or interfaces.

Moreover if U(D) [35] represents an eigenvector of the reference system, equation (6)
enables the calculation of the eigenvectors u(D) of the composite material

u(D) = U(D)− U(M)G−1(MM)G(MD)

+U(M)G−1(MM)g(MM)G−1(MM)G(MD). (8)

In equation (8), U(D), U(M) and u(D) are row-vectors. Equation (8) provides a description
of all the waves reflected and transmitted by the interfaces, as well as the reflection and the
transmission coefficients of the composite system. In this case, U(D) must be replaced by a
bulk wave launched in one homogeneous piece of the composite material [35].

Before addressing the problem of SLSs it is worthwhile as a first step to know the surface
elements of the Green function of a finite wire of length di . The finite wire is bounded by two
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free surfaces located atx3 = −di/2 andx3 = +di/2. These surface elements can be written [34]
in the form of a (2 × 2) matrix gi(MiMi), within the interface space Mi ≡ {−di/2,+di/2}.
The inverse of this matrix takes the following form:

[gi(MM)]
−1 =

(
Ai Bi
Bi Ai

)
(9)

where

Ai = −FiCi
Si

(10a)

Bi = Fi

Si
(10b)

with

Ci = cosh (αidi), (10c)

and

Si = sinh (αidi). (10d)

Within the total interface space of the infinite SLS, the inverse of the matrix giving all the
interface elements of the Green function g is an infinite tridiagonal matrix [34] formed by linear
superposition of the elements [gi(MM)]−1. Taking into account the respective contributions
of media 1 and 2 in the interface domain constituted of all the sites (n, i,±d1/2), this matrix
takes the following form:

[g(MM)]−1 =



B1 A1 + 2A2 2B2 · · · · · · · · ·
· · · 2B2 A1 + 2A2 B1 · · · · · ·
· · · · · · B1 A1 + 2A2 2B2 · · ·
· · · · · · · · · 2B2 A1 + 2A2 B1


 . (11)

Taking advantage of the translational periodicity of the system in the direction x3, the
above matrix can be Fourier transformed as

[g(k,MM)]−1 =
(

A1 + 2A2 B1 + 2B2e−jkD

B1 + 2B2ejkD A1 + 2A2

)
(12)

where k is the modulus of the one-dimensional reciprocal vector k. In the k space, the Green
function of the infinite SLS is obtained by inverting the above matrix, i.e.

[g(k,MM)] = 1/2

cos(kD)− ξ

(
Y1

S2
2F2

+ S1
F1

e−jkD

S2
2F2

+ S1
F1

ejkD Y1

)
(13)

where

ξ = C1C2 +
1

2

(
F1

2F2
+

2F2

F1

)
S1S2 (14)

and

Y1 = C2S1

F1
+
C1S2

2F2
. (15)

The dispersion relation of the infinite serial loop waveguide is given by equation (7). This
relation takes the simple form

cos (kD) = ξ. (16)

It is also straightforward to Fourier analyse back into real space all the elements of
g(k,MM) and obtain all the interface elements of g, in the following form:
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g(n, 1,+d1/2; n′, 1,+d1/2) = g(n, 1,−d1/2; n′, 1,−d1/2) = Y1
t |n−n

′|+1

t2 − 1
(17a)

g(n, 1,+d1/2; n′, 1,−d1/2) = S2

2F2

t |n−n
′|+1

t2 − 1
+
S1

F1

t |n−n
′+1|+1

t2 − 1
(17b)

g(n, 1,−d1/2; n′, 1,+d1/2) = S2

2F2

t |n−n
′|+1

t2 − 1
+
S1

F1

t |n−n
′−1|+1

t2 − 1
(17c)

where the integers n and n′ refer to the cell number (−∞ < n, n′ < +∞) on the infinite
waveguide and the parameter t is given by

t = ejkD. (18)

2.2. Transmission coefficient of the finite serial loop structures

Infinite magnonic SLSs are not physically realizable but finite loop structures are. Therefore,
in this section, we investigate the transmission properties of a finite SLS. This structure
is constructed as follows: a finite piece containing N equidistant loops is cut out of the
infinite periodic system illustrated in figure 1(a), and this piece is subsequently connected
at its extremities to two semi-infinite leading lines (medium 3). The finite SLS is therefore
composed of N loops (medium 2; 2d2 is the length of each loop) pasted periodically with a
finite segment (medium 1) of length d1. We calculate analytically the transmission coefficient
of a bulk spin wave from x3 = −∞.

The system of figure 1(b) is built from the infinite SLS illustrated in figure 1(a). In a
first step, one suppresses the segment linking the loops lying in the cell 0 and in the cell 1 as
well as the segment linking the loops lying in cell N and in cell N + 1. For this new system
composed of a finite SLS and two semi-infinite leads, the inverse Green function at the interface
space, [gt (MM)]−1, is an infinite banded matrix defined in the interface domain of all sites
(n, i,±d1/2), −∞ < n < +∞. This matrix is similar to that associated with the infinite
SLS. Only a few matrix elements differ, namely those associated with the sites (1, 1,−d1/2),
(1, 1,+d1/2), (N + 1, 1,−d1/2) and (N + 1, 1,+d1/2).

The cleavage operator Vcl(MM) = [gt (MM)]−1 − [g(MM)]−1 [34] is the following
4×4 square matrix defined in the interface domain which is constituted of sites (1, 1,−d1/2),
(1, 1,+d1/2), (N + 1, 1,−d1/2) and (N + 1, 1,+d1/2):

Vcl(MM) =




−A1 −B1 0 0
−B1 −A1 0 0

0 0 −A1 −B1

0 0 −B1 −A1


 . (19)

Using equations (17) and (19), one obtains the matrix operator (MM) = I(MM) +
Vcl(MM)g(MM) in the space M of sites (1, 1,−d1/2), (1, 1,+d1/2), (N + 1, 1,−d1/2)
and (N + 1, 1,+d1/2). For the calculation of the transmission coefficient, we need only
the matrix elements (1, 1,+d1/2; 1, 1,+d1/2),(1, 1,+d1/2;N + 1, 1,−d1/2),(N +
1, 1,−d1/2; 1, 1,+d1/2) and (N + 1, 1,−d1/2;N + 1, 1,−d1/2), which can be set in the
form of the 2 × 2 matrix s(MM)

s(MM) =
(

1 + −t (A1Y1+B1Y
′
2)

t2−1
−tN (B1Y1t+A1Y2)

t2−1
−tN (B1Y1t+A1Y2)

t2−1 1 + −t (A1Y1+B1Y
′
2)

t2−1

)
(20)

where

Y2 = S2

2F2
t +

S1

F1
(21)
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and

Y ′
2 = S2

2F2
+
S1

F1
t. (22)

The inverse surface Green function [ds(MM)]−1 of the finite SLS in the space of sites
(1, 1,+d1/2) and (N + 1, 1,−d1/2) is given by

[ds(MM)]
−1 = s(MM)[gs(MM)]

−1 (23)

where

gs(MM) = t

t2 − 1

(
Y1 tN−1Y2

tN−1Y2 Y1

)
(24)

is the matrix constituted of elements of g(MM) associated with sites (1, 1,+d1/2) and
(N + 1, 1,−d1/2). From equation (23), simple algebra leads to

[ds(MM)]
−1 =

(
A(N) B(N)

B(N) A(N)

)
(25)

where

A(N) = Y1Y4 − t2N−2Y3Y2

Y 2
1 − t2N−2Y 2

2

(26)

B(N) = −Y2Y4 + Y3Y1

Y 2
1 − t2N−2Y 2

2

tN−1 (27)

Y3 = C1 − C2t (28)

and

Y4 = −1

t
+ C1C2 +

F1

2F2
S1S2. (29)

In a second step, two semi-infinite leads (medium 3) are connected to the extremities
(1, 1,+d1/2) and (N + 1, 1,−d1/2) of the finite SLS. With the help of the GFM [34], the
inverse surface Green function [d(MM)]−1 of the finite serial loops with two connected semi-
infinite leads is given by

[d(MM)]−1 =
(
A(N)− F3 B(N)

B(N) A(N)− F3

)
(30)

and consequently

d(MM) = 1

(A(N)− F3)2 − B(N)2

(
A(N)− F3 −B(N)

−B(N) A(N)− F3

)
(31)

where F3 is the inverse surface Green function of the semi-infinite lead.
We now calculate the transmission coefficient with a bulk spin wave from x3 = −∞,

U(x3) = e−α3x3 . Substituting this incident wave in equation (8) and considering equations (2)
and (31), the transmission coefficient takes the form

T =
∣∣∣∣∣ 2F3B(N)

(A(N)− F3)2 − B(N)2

∣∣∣∣∣
2

. (32)
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2.3. Transmission coefficient of a structure with a defect

The following section focuses on the existence of localized modes present within the gaps
when a finite wire of length d1 is replaced by a segment of length dd �= d1 in one cell of the
waveguide (see figure 1(c)). With the help of the GFM [34] one can arrive, analytically, at the
following result for the localized states in the case of an infinite loop structure (N → ∞):{

1 +
t

t2 − 1
(Y1 − Y ′

2)(Ad − Bd + B1 − A1)

}

×
{

1 +
t

t2 − 1
(Y1 + Y ′

2)(Ad + Bd − B1 − A1)

}
= 0 (33)

where Ad and Bd have the same definitions as Ai and Bi , which are given by equations (10a)
and (10b).

Assuming that the defect is located in any cell of a finite SLS (see figure 1(c)), we have
written an analytical expression for the transmission factor T through the defective waveguide

T =
∣∣∣∣∣ 2F3B(N)B(p)Bd

Y5Y
′
5 − Bd

2(A(N)− F3)(A(p)− F3)

∣∣∣∣∣
2

(34)

where

Y5 = B2(N)− (A(N)− F3)(A(N) + Ad) (35)

Y ′
5 = B2(p)− (A(p)− F3)(A(p) + Ad). (36)

The integer p, such that 1 < p � N , refers to the position of the defect cell in the
waveguide and the rest of the symbols have their usual meaning.

3. Numerical results and discussion

We now illustrate these analytical results by a few numerical calculations for some specific
examples. We report the results of dispersion relations and transmission factors with and
without defects in the one-dimensional SLS. For the sake of simplicity, we have limited
ourselves to the case where identical media (F1 = F2 = F3 = Fd) constitute the SLS.

3.1. Magnonic bandgaps and transmission spectra

We start this section with a study of a simple example, namely a waveguide consisting of a
unique loop. Equation (32) for the transmission factor T in the case of N = 1 can be written
as

T = 16

25 − 9cos2(α′
2d2)

(37)

where α′
2 = −jα2 = √

(ω − γ2H0)/D
′
2.

This equation is identical to equation (9), which was given by Xia in [36]. The transmission
coefficient reaches its minimum value of 16/25 when cos(α′

2d2) = 0, i.e.

α′
2d2 = (m + 1

2 )π. (38)

The corresponding frequency is then

ωg = γ2H0 +D′
2

[
(m + 1/2)

π

d2

]2

(39)
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Figure 2. Transmission coefficient versus reduced frequency for a waveguide with one loop in the
case of identical media 2 and 3. For convenience Hg is considered to be 1.

where m is a positive integer. Equation (39) can be rewritten in the dimensionless form

-g = Hg + [(m + 1/2)π ]2 (40)

with -g = ωgd2
2/D′

2 and Hg = γ2H0d2
2/D′

2. It is noticeable from equation (37) that T
reaches its maximum value of unity when α′

2d2 is a multiple of π . The variations of T versus
the reduced frequency, - = ωd2

2/D′
2, are reported in figure 2. In the case where N > 1, the

minima of the transmission coefficient enlarge into gaps.
We now turn to the numerical results of the band structure and transmission coefficient

for N > 1. In figure 3(a) the first five dispersion curves are shown in the band structure of the
infinite serial loop composite with d1 = d2, andN −→ ∞. The plots are given as the reduced
frequency - = ωd1

2/D′
1 = H̃ − α2

1d
2
1 , with H̃ = γ1H0d1

2/D′
1, versus the dimensionless

wavevector kD (−π � kD � +π ). There is a complete absolute gap below the lowest band
due to the presence of the external field H0. There exist other absolute gaps, between the
first and the second bands, the third and the fourth bands. The tangential points between the
second and the third bands, on one hand, and the fourth and fifth bands, on the other hand, are
degenerate points and they appear at kD = 0. Asymmetry is revealed between the second and
the third bands as well as between the fourth and the fifth bands. This is reflected in the plot
of the transmission factor. Figure 3(b) shows the frequency dependence of the transmission
for d2 = d1 and N = 10. The number of oscillations in the transmission factor within the
pass bands, which corresponds to the second and the third or to the fourth and fifth bands,
has been noted to be unfailingly 2N − 1. This number is N − 1 within the first pass band,
which corresponds to the band that has no tangential points with any other bands (see also
figure 3(d)).

Let us stress that, unlike the case in the usual one-dimensional (superlattice) or two-
dimensional composite systems where the contrast in physical properties between the
constituent materials is a critical parameter in determining the existence of the gaps [13–17],
the occurrence of narrow magnonic bands does not require the use of two different materials. In
other words, the magnonic structure is tailored within a single homogeneous medium although
the boundary conditions impose the restriction that the waves propagate only in the interior of
the waveguides.

In order to study the influence of the geometry of the SLS on its magnonic band structure,
we have computed the band structure for d2/d1 �= 1. For instance, figure 3(c) shows the first
three bands for d2 = 0.3d1. It is noticeable that in this case the degenerate (tangential) points
are removed and the bandgaps widen. A comparison between figures 3(a) and (c) reveals
that the number of dispersion curves in the reduced frequency range, going from 0 to 60,
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Figure 3. (a) The magnonic band structure of the infinite serial loop structure. We have chosen
d1 = d2, D′

1 = D′
2, H̃ = 1 and N → ∞. One observes an absolute gap below the first band due

to the presence of the external field H0. (b) Transmission spectrum versus the reduced frequency
for a waveguide with N = 10. The other parameters are the same as in figure 3(a). (c) The same
as in figure 3(a) but for d2 = 0.3d1. (d) The same as in figure 3(b) but for d2 = 0.3d1.

decreases when the ratio d2/d1 decreases. In other words, introducing such a deficiency in the
geometry of the waveguide leads to a widening of the stop bands. The transmission factor is
also influenced by this change of geometry. This phenomenon is illustrated in figure 3(d) for
N = 10. Interestingly, the width of the pass bands (stop bands) decreases (increases) with
this length d2. Let us also underline the fact that the number of loops in the waveguide, N , is
important in achieving completely formed gaps. This number is of the order of N ≈ 6 where
d2 = d1 (similar results are obtained for d2/d1 = 0.5, 1, 1.5, 2, 2.5), while it is of the order of
N ≈ 8 when d2 = 0.3d1.
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Figure 4. The variation of the gap-width of the first three magnonic bandgaps appearing in the
band structure as a function of d2/d1. The numbers 1–3 refer to the first, second and third gaps,
with increasing frequencies, in figure 3.

Figure 4 gives the evolution of the gap-width of the three lowest bandgaps in the one-
dimensional SLS of figure 3. The gap-width on the y-axis represents the difference between
the top and bottom frequencies of the absolute bandgaps as a function of d2/d1 in the range
0 < d2/d1 < 2. As shown in figure 4, the second and the third gaps, respectively, close up
for d2/d1 = 0.5 and 2, and d2/d1 = 1/3 and 1. All three gaps present a maximum width for
d2/d1 < 1.

Figure 5 depicts the effect of the number N of loops on the transmission spectrum T for
a finite SLS with d2/d1 = 1. We show the frequency dependence of the transmission for
N = 2, 6 and 9 in the top, middle and bottom panels, respectively. One can see in the top
panel forN = 2 that the transmission factor still does not reach the value zero i.e. there exists a
partial transmission within the pseudo-gaps shown in this picture. It is apparent also that asN
increases these pseudo-gaps in the transmission factor turn into full gaps. However, one does
not need exceedingly large values of N . Indeed, at the relatively small value of N = 6 the
gaps exist (note that the gap edge is however not yet sharp for N = 6). Moreover, for a given
frequency range, there is an optimum value of the loop number above which any additional
increase leaves the bands practically unaffected.

Finally, we end this section with a study of the influence of the number of loops on the
geometry of the transmission factor when the ratio d2/d1 �= 1. The results are displayed in
figure 6, where d2/d1 = 0.3 is kept fixed, while N takes the values 2, 6 and 9 in the top,
middle and bottom panels, respectively. Again we notice that the shrinking (widening) of the
pass bands (stop bands) reveals the same behaviour as described in figure 5. For two different
lengths d1 and d2, the oscillation amplitude decreases while the oscillation number is N − 1.
Thus, the convergence to full gaps can be achieved in most cases for a reasonably small number
of loops.

3.2. Defect modes and selective transmission

In this section, we discuss the existence of localized states present within the gaps when a
defect is inserted in one cell of the waveguide (see figure 1(c)). Using equation (33), we
studied the existence of localized modes as a function of the defect length. As mentioned
before, we assume that our system is composed of identical media and d2/d1 = 0.3. Figure 7
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Figure 5. Evolution of the transmission spectrum versus the reduced frequency for several values
of N . We have chosen H̃ = 1, and d1 = d2. The top, middle and bottom panels depict the
transmission for N = 2, 6 and 9, respectively. Note that increasing N results in turning some of
the pseudo-gaps into complete gaps.

gives the frequencies of the localized modes as a function of the ratio dd/d1, where dd is the
length of the defect branch. The hatched areas correspond to the bulk bands of the perfect
infinite SLS. The frequencies of the localized modes are very sensitive to the length dd. The
localized modes emerge from the bulk bands, decrease in frequency with increasing length dd

and finally merge into a lower bulk band, where they become resonant states. At the same
time, new localized modes emerge from the bulk bands. One can notice that for any given
reduced frequency in figure 7 there is a periodic repetition of the modes as functions of dd/d1.

The transmission spectrum is also affected by the presence of a defect branch inside
the finite SLS. In particular, T (see equation (34)) exhibits narrow peaks associated with the
localized modes. In figure 8, we compare the transmission coefficient for finite SLSs with
and without defects. The results are illustrated for N = 10 and d2/d1 = 0.3. Figure 8(a)
presents the transmission through a non-defective waveguide in the reduced frequency range
going from 0 to 70 and is similar to that presented in figure 6(c). One observes in figure 8(b)
that the presence of a defect branch of length dd = 1.3d1 in the middle of the waveguide
(i.e. p = 6) gives rise to localized modes in the second, third and fourth gaps. The localized
mode inside the third forbidden band lies in the middle of the gap while the localized modes
in the other two gaps lie closer to the bulk bands. The second bulk band is asymmetric due to
the proximity of the first localized mode to its left-hand side. The situation is similar for the
third pass band, but the asymmetry is due to the proximity of the localized mode to its right.
In the frequency range displayed in this figure, one can see that the peaks corresponding to



650 A Mir et al

T
ra

ns
m

is
si

on
0.0

0.5

1.0

0.0

0.5

1.0

Reduced Frequency

0 10 20 30 40 50 6 00 7

0.0

0.5

1.0

N = 2

N = 6

N = 9

Figure 6. The same as in figure 5 but for d2 = 0.3d1. Attention is drawn to the increasing of the
oscillation amplitudes with this choice of the length d2 �= d1.

the localized modes are very narrow. The localized mode situated in the middle of the gap is
more confined; i.e., the quality factor of the corresponding peak is greater. The transmission
inside the pass bands is also affected nontrivially by the presence of a defect. The amplitude
of the oscillations is much higher in the perturbed waveguide than in the perfect one. This
behaviour is due to the presence of the defect branch in the middle of the waveguide. This
forces the system to behave as two linked identical SLS waveguides with five loops. Each of
these five-loop SLSs contributes in the same manner to the transmission depicted in figure 8(b).
In particular, the transmission occurring inside the pass bands through each five loops presents
the same number of oscillations with identical amplitude. This can have a constructive effect
on the transmission of the defective waveguide, and this can explain why the oscillations are
of stronger amplitude in figure 8(b) than those observed in figure 8(a). Finally, the last two
panels of figure 8 demonstrate the influence of the position of the defect unit cell p on the
transmission factor. In figures 8(c) and (d), the defect has been displaced from the centre of the
structure (see figure 8(b)) to the seventh and eighth cells, respectively. In figure 8(c), there are
six loops to the left of the defect and four to its right, while in figure 8(d) there are seven to the
left of the defect and only three to its right. Unlike what is shown in figure 8(b), the ten-serial-
loop structure behaves here as two linked waveguides with different numbers of loops. These
two linked waveguides contribute in a different manner to the transmission of the defective
structure, plotted in figures 8(c) and (d). In particular, the maxima and minima of transmission
associated with each linked waveguide do not overlap. This may have a destructive effect on
the transmission of the defective structure. In summary, the farther away the location of the
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Figure 7. Frequencies of the localized modes associated with a defect branch of length dd, inserted
in an infinite serial loop structure. The other parameters are N −→ ∞, d2 = 0.3d1 and H̃ = 1.
The system is assumed to be composed of identical media.

defect branch from the middle of the waveguide, the stronger the depression in the transmission
spectrum. In parallel, the closer the defect to the centre, the more confined the peak associated
with the localized state.

Finally, we end this section with a study of the evolution of the intensity of the gap states
as a function of the defect length dd/d1. The results are illustrated for three positions of the
defect in figure 9(a). The plots are given for N = 10 and d2/d1 = 0.3. The hatched areas
correspond to the pass bands of the structure. The dotted, dashed and full curves display the
defect length dependence of the gap mode intensities for p = 6, 7, 8 respectively. We draw
attention to the fact that the intensity of gap modes increases with the centralization of the
defect inside the waveguide, and vice versa. One can also notice that for p = 6, i.e. the defect
branch is placed in the middle of the structure, the intensity of the gap modes is equal to unity.
This property is commonly verified when the composite system is symmetric, while it may
only happen under special conditions if the composite system is asymmetric. For the sake
of clarity, we have also sketched in figure 9(b) the frequencies of the localized modes as a
function of the ratio dd/d1. (The hatched areas correspond to the bulk bands of the perfect
infinite SLS.)

4. Summary and conclusions

In this paper we have presented a theoretical investigation of the magnonic band structure
of one-dimensional SLS. Using a Green function method, we have obtained closed-form
expressions for the band structure as well as for the transmission coefficients for an arbitrary
value of the number N of loops in the structure. Absolute bandgaps exist in the spin wave
band structure of an infinite SLS. The calculated transmission coefficient of magnons in finite
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Figure 8. (a) Transmission spectrum versus the reduced frequency for a ten-loop SLS without
defects. The other parameters are H̃ = 1 and d2 = 0.3d1. (b) The same as in figure 8(a) but with
one defect of length dd = 1.3d1 located in the middle of the waveguide, i.e. on the sixth cell. (c), (d)
The same as in figure 8(b) but the defect is located on the seventh and eighth cells, respectively. In
the frequency range displayed in (b), one can see that the peaks falling in the gaps are very narrow
and present a strong amplitude. Transmission inside a bulk band is nontrivially affected by the
presence of a defect. One notes the increase of the oscillation amplitudes. Panels (c) and (d) show
that shifting the defect from the centre leads to a depression in the transmission factor inside the
pass bands and reduces the amplitude of the peaks associated with the localized modes.

loop structures parallels the band spectrum of the infinite periodic SLS. The existence of the
gaps in the spectrum is attributed to the periodicity of the geometry. In these systems, the gap
width is controlled by the geometrical parameters as well as by the contrast in the physical
properties of the constituents of the waveguide. Nevertheless, the magnonic band structure
exhibits relatively wide gaps for homogeneous systems where the loops and the segments are
constituted of the same material. We have also shown that waveguides composed of finite
numbers of loops exhibit a behaviour similar to that of an infinite periodic SLS.

Analytical and numerical results on localized modes in perturbed waveguides were also
reported. These localized modes result from the presence of a defect branch in the structure.
These modes appear as narrow peaks of strong amplitude in the transmission spectrum when
the defect is located in the middle of the waveguide. By changing the location of the defect
in the waveguide, one affects significantly the transmission factor. Since it is generally the
case that magnetic periodic networks have wide technical applications, it is anticipated that
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Figure 9. (a) Variation of the intensity of the transmitted gap modes as a function of the defect
length dd, inserted in a serial loop structure. The defect is situated on the sixth (dotted curves),
seventh (dashed curves) and eighth (full curves) unit cell, respectively. The results are illustrated
for N = 10, d2 = 0.3d1 and H̃ = 1. (b) Frequencies of the gap modes associated with a defect
branch of length dd.

this new class of materials, which can be referred to as ‘magnonic crystals’, will turn out to
be of significant value for prospective applications. One would expect such applications to
be feasible in spintronic devices, since magnon excitation energies also fall in the microwave
range. Interestingly, the existence of a complete gap in these ‘magnonic crystals’ guarantees
the perfect reflection (and hence an absence of transmission) of the excited spin wave within
the frequency range of the stop band. The fabrication of such ‘magnonic crystals’ is of high
interest because it will prohibit the transmission of spin waves within a desired forbidden
frequency range. It is worth pointing out again that in all our calculations we have assumed
that the cross section of the waveguide is small compared with the wavelength of the magnons.

It is relevant to direct attention here to some important differences between investigating
the comblike structure (CLS) presented in [18] and the SLS presented in this paper. In the
CLS we had to take into consideration the boundary conditions at the end of the resonators
(dangling side branches); this problem is avoided in the present work for the SLS. In studying
the transmission coefficient through a defective geometry, the defect branch in the CLS [18]
was inserted (fixed) at the middle of the comb, while in the present work the defect can be
located in any cell of the SLS, which in turn changes dramatically the transmission spectrum.
It is also worth mentioning that when the defect wire is located in the middle of the SLS and
whatever the ratio dd/d1 the intensities of the transmitted gap modes remain unity. However,
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if the position of the defected cell is not in the middle, the intensity of the transmitted gap
modes is remarkably depressed.

As a final remark, let us emphasize that our approach can only treat spin-wave excitations
for isotropic Heisenberg ferromagnetic systems in which all the magnetizations are aligned
to the same axis. The fact is that the spin wave is rather sensitive to the background spin
configuration, which is again modified by the spin waves excited. Also the single-ion
anisotropy, which is neglected in our approach, plays an important role in modelling real
magnetic systems. A promising extension of the present work is to include explicitly the effects
of the competition between exchange interaction and anisotropy, which generally results in
complicated spin configuration and modifies the spin-wave spectrum.
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